`lb build` is a top level command and the one most users will want. listing
the secondary component build stages alongside it just confuses things.
here we clarify things by moving the second-level build stages to a
separate list.
Gbp-Dch: Short
This makes it possible to build an image against a first distribution
(--distribution-chroot) and have the resulting image point to another
distribution (--distribution-binary). We can use this to build against a
snapshot and have the result use the original distribution that was
snapshotted.
Closes: #888507
This option was removed in commit 7e633e77f (Moving grub and grub2
templates into shared bootloader config directory.), but the
documentation stayed around.
Before Stretch there was an special amd64 kernel in the i386 arch repo.
So if you wanted to install an amd64 kernel alongside an i386 system
you did not need an additional arch repo.
Debian added multiarch support. That way you can install library packages
from multiple architectures on the same machine.
So there is no longer a need for having an amd64 kernel in i386 arch repo.
You can add an amd64 arch repo to an i386 arch system and fetch the amd64
kernel from the am64 arch repo.
live-build can be setup to use several linux kernel flavours in a single
image.
So in the days previous to this patch you could issue:
lb config --linux-flavours "486 amd64"
to use both 486 and amd64 kernel flavours.
Adding additional arch support to linux flavours poses two problems:
* Packages need to have its arch suffix (e.g. amd64:amd64).
If the suffix is not there apt-get insists on search amd64 kernel
package on i386 arch repo and, of course, fails to find it.
* The rest of the code which handles labels (bootloader config files)
or installed filenames (kernel images themselves) do not use the arch suffix.
This patch adds foreign architecture package support to
linux kernel flavours having taken those problems into account.
Practical example usage: i386 system and extra amd64 kernel.
First add amd64 foreign architecture in your i386 system
thanks to:
dpkg --add-architecture amd64
apt-get update
.
Finally enable amd64 kernel from amd64 arch alongside the
i386 system's 686 kernel thanks to:
lb config --architectures i386 --linux-flavours "686 amd64:amd64"
Open Network Install Environment is an open image format used by
networking vendor to ship a standardised image for networking white
box switches.
ONIE hardware takes this image at boot and a script to chain load
into the final environment via kexec. We can support Debian and
derivatives on such systems by packing an ISO which then gets
unpacked, kexec'ed and live-booted.
A base ONIE system can be tested in QEMU by building a VM following
these instrunctions:
https://github.com/opencomputeproject/onie/blob/master/machine/kvm_x86_64/INSTALL
Once built, boot onie-recovery-x86_64-kvm_x86_64-r0.iso in QEMU/libvirt
and on the console there will be the terminal prompt. Check the IP
assigned by libvirt and then scp the live image (ssh access is enabled
as root without password...). Then the .bin can be booted with:
ONIE-RECOVERY:/ # onie-nos-install /tmp/live.hybrid.iso-ONIE.bin
The implementation is inspired by ONIE's own scripts that can be found
at:
https://github.com/opencomputeproject/onie/blob/master/contrib/debian-iso/cook-bits.sh
A new option, --onie (false by default) can be set to true to enable
building this new format in addition to an ISO.
An additional option, --onie-kernel-cmdline can be used to specify
additional options that the ONIE system should use when kexec'ing the
final image.
Note that only iso or hybrid-iso formats are supported.
For more information about the ONIE ecosystem see:
http://onie.org
Signed-off-by: Erik Ziegenbalg <eziegenb@Brocade.com>
Signed-off-by: Luca Boccassi <bluca@debian.org>