Support for UEFI Secure Boot is modelled after how it currently works
in Ubuntu and on how it is going to work on Debian.
A minimal bootloader, shim, is used as the first-stage and it then
loads grub. Both have to be signed.
shim-signed is already available in Debian so the filenames are
already established, and the grub2 repository and packaging is common
between the 2 distros so we can already be reasonably sure of what it
is going to be.
So if both are available, copy /usr/lib/shim/shim[x64|aa64].efi.signed
as boot[x64|aa64].efi so that UEFI loads it first, and copy
/usr/lib/grub/[x86_64|arm64]-efi-signed/grub[x64|aa64].efi.signed as
grub[x64|aa64].efi.
This grub2 EFI monolithic image is currently hard-coded in grub2's
repository to look for a config file in efi/debian, so make a copy
of the previously added minimal grub.cfg that loads the real one in
that directory in both the fat32 and ISO 9660 partitions.
The new option --uefi-secure-boot can be set to auto (default,
enable or disable.
In auto, the lack of the signed EFI binaries is intentionally left as a
soft failure - live-build will simply fallback to using the locally
generated non-signed grub2 monolithic EFI binary as the only
bootloader. Given the difficulties surrounding the Secure Boot
signing infrastructure this approach gives the most flexibility and
makes sure things will "just work" once the packages are available,
without the need to change anything in the configuration.
This will also greatly help downstream distributions and users who
want to do self-signing.
The enable or disable options work as expected.
Closes: #821084
This option lets you use an alternate bootstrap script when running
debootstrap. Thanks to Sjoerd Simons <sjoerd@debian.org> for the initial
patch.
Closes: #790033
Some BIOSes dont't boot from partitions starting at sector 1024.
Some are even more peculiar and only start from sector 63.
This patch adds an option for the binary_hdd target to manually
configure the partition start.
Note: OLDIFS use makes IFS to be reset to "" instead to it being unset.
Either we need to detect if old IFS was unset to unset it
or we need a proper way of setting it as a local variable.
Even more IFS it's not currently used in
Check_package (which it's called from: binary_hdd).
we should have a clean way of resetting/unsetting IFS when calling Check_package.
The other approach it's to explicitly define IFS with its default value in the
places inside live-build code where we implicitly suppose that it's going to have
its default value.
Future live-build versions will still allow to use casper,
but its configuration will be done differently by a custom
config tree, rather than embedded and maintenance intensive
code in live-build itself.
Future live-build versions will still allow to use casper,
but its configuration will be done differently by hooks
in the config tree, rather than embedded and maintenance intensive
code in live-build itself.
debootstrap is the official tool to bootstrap debian,
cdebootstrap has had the one or other bug making it
broken for times during the release cycles.
The extra effort of supporting both debootstrap
and cdebootstrap is hardly worth it since the bootstrap
stage is cached anyway.
In the past, we had lb config for both creating a configuration directory
and updating settings in there. With the rewrite in Python, we're now
changing this finally to the more sane 'init' (create initial 'sample'
configuration directory tree, taking most arguments that lb config did)
and 'config' which will only be a get/set program to work on top of
an already initialized configuration tree.