Sync the SHA256 code with NetBSD HEAD.
This fixes a buffer overflow and avoids unnecessary casts and other cleanup thorough the code. --HG-- extra : convert_revision : 4b389251cfb76b28028967cd60c409fe94f6c85e
This commit is contained in:
parent
9fa47ba790
commit
816baf0d8a
|
@ -32,10 +32,6 @@
|
|||
#ifndef _SHA2_DIGEST_H_
|
||||
#define _SHA2_DIGEST_H_
|
||||
|
||||
typedef uint8_t sha2_byte; /* Exactly 1 byte */
|
||||
typedef uint32_t sha2_word32; /* Exactly 4 bytes */
|
||||
typedef uint64_t sha2_word64; /* Exactly 8 bytes */
|
||||
|
||||
/*** SHA-256 Various Length Definitions ***********************/
|
||||
#define SHA256_BLOCK_LENGTH 64
|
||||
#define SHA256_DIGEST_LENGTH 32
|
||||
|
@ -48,8 +44,8 @@ typedef struct _SHA256_CTX {
|
|||
uint8_t buffer[SHA256_BLOCK_LENGTH];
|
||||
} SHA256_CTX;
|
||||
|
||||
void SHA256_Init(SHA256_CTX *);
|
||||
void SHA256_Update(SHA256_CTX*, const uint8_t*, size_t);
|
||||
char *SHA256_End(SHA256_CTX*, uint8_t[SHA256_DIGEST_STRING_LENGTH]);
|
||||
int SHA256_Init(SHA256_CTX *);
|
||||
int SHA256_Update(SHA256_CTX *, const uint8_t *, size_t);
|
||||
char *SHA256_End(SHA256_CTX *, uint8_t *);
|
||||
|
||||
#endif /* !_SHA2_DIGEST_H_ */
|
||||
|
|
298
lib/sha256.c
298
lib/sha256.c
|
@ -1,4 +1,11 @@
|
|||
/* $NetBSD: sha2.c,v 1.18 2009/06/25 14:05:18 joerg Exp $ */
|
||||
/* $KAME: sha2.c,v 1.9 2003/07/20 00:28:38 itojun Exp $ */
|
||||
|
||||
/*
|
||||
* sha2.c
|
||||
*
|
||||
* Version 1.0.0beta1
|
||||
*
|
||||
* Written by Aaron D. Gifford <me@aarongifford.com>
|
||||
*
|
||||
* Copyright 2000 Aaron D. Gifford. All rights reserved.
|
||||
|
@ -14,7 +21,7 @@
|
|||
* 3. Neither the name of the copyright holder nor the names of contributors
|
||||
* may be used to endorse or promote products derived from this software
|
||||
* without specific prior written permission.
|
||||
*
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTOR(S) ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
|
@ -41,31 +48,12 @@
|
|||
#include <inttypes.h>
|
||||
#include <libgen.h>
|
||||
|
||||
#include <xbps_api.h>
|
||||
|
||||
/*** SHA-256 Machine Architecture Definitions *****************/
|
||||
#include "xbps_api.h"
|
||||
|
||||
/*** SHA-256 Various Length Definitions ***********************/
|
||||
/* NOTE: Most of these are in sha2.h */
|
||||
#define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
|
||||
|
||||
/*** ENDIAN REVERSAL MACROS *******************************************/
|
||||
#ifndef WORDS_BIGENDIAN
|
||||
#define REVERSE32(w,x) { \
|
||||
sha2_word32 tmp = (w); \
|
||||
tmp = (tmp >> 16) | (tmp << 16); \
|
||||
(x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
|
||||
}
|
||||
#define REVERSE64(w,x) { \
|
||||
sha2_word64 tmp = (w); \
|
||||
tmp = (tmp >> 32) | (tmp << 32); \
|
||||
tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
|
||||
((tmp & 0x00ff00ff00ff00ffULL) << 8); \
|
||||
(x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
|
||||
((tmp & 0x0000ffff0000ffffULL) << 16); \
|
||||
}
|
||||
#endif /* WORDS_BIGENDIAN */
|
||||
|
||||
/*** THE SIX LOGICAL FUNCTIONS ****************************************/
|
||||
/*
|
||||
* Bit shifting and rotation (used by the six SHA-XYZ logical functions:
|
||||
|
@ -90,9 +78,18 @@
|
|||
#define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
|
||||
#define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
|
||||
|
||||
/*** INTERNAL FUNCTION PROTOTYPES *************************************/
|
||||
/* NOTE: These should not be accessed directly from outside this
|
||||
* library -- they are intended for private internal visibility/use
|
||||
* only.
|
||||
*/
|
||||
static void SHA256_Transform(SHA256_CTX *, const uint32_t*);
|
||||
static int SHA256_Final(uint8_t *, SHA256_CTX *);
|
||||
|
||||
|
||||
/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
|
||||
/* Hash constant words K for SHA-256: */
|
||||
static const sha2_word32 K256[64] = {
|
||||
static const uint32_t K256[64] = {
|
||||
0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
|
||||
0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
|
||||
0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
|
||||
|
@ -112,7 +109,7 @@ static const sha2_word32 K256[64] = {
|
|||
};
|
||||
|
||||
/* Initial hash value H for SHA-256: */
|
||||
static const sha2_word32 sha256_initial_hash_value[8] = {
|
||||
static const uint32_t sha256_initial_hash_value[8] = {
|
||||
0x6a09e667UL,
|
||||
0xbb67ae85UL,
|
||||
0x3c6ef372UL,
|
||||
|
@ -123,30 +120,34 @@ static const sha2_word32 sha256_initial_hash_value[8] = {
|
|||
0x5be0cd19UL
|
||||
};
|
||||
|
||||
/*** SHA-256: *********************************************************/
|
||||
int
|
||||
SHA256_Init(SHA256_CTX *context)
|
||||
{
|
||||
if (context == NULL)
|
||||
return 1;
|
||||
|
||||
memcpy(context->state, sha256_initial_hash_value,
|
||||
(size_t)(SHA256_DIGEST_LENGTH));
|
||||
memset(context->buffer, 0, (size_t)(SHA256_BLOCK_LENGTH));
|
||||
context->bitcount = 0;
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
#ifdef SHA2_UNROLL_TRANSFORM
|
||||
|
||||
/* Unrolled SHA-256 round macros: */
|
||||
|
||||
#ifndef WORDS_BIGENDIAN
|
||||
|
||||
#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
|
||||
REVERSE32(*data++, W256[j]); \
|
||||
W256[j] = be32toh(*data); \
|
||||
++data; \
|
||||
T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
|
||||
K256[j] + W256[j]; \
|
||||
(d) += T1; \
|
||||
(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
|
||||
j++
|
||||
|
||||
|
||||
#else /* WORDS__BIGENDIAN */
|
||||
|
||||
#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
|
||||
T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
|
||||
K256[j] + (W256[j] = *data++); \
|
||||
(d) += T1; \
|
||||
(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
|
||||
j++
|
||||
|
||||
#endif /* WORDS_BIGENDIAN */
|
||||
|
||||
#define ROUND256(a,b,c,d,e,f,g,h) \
|
||||
s0 = W256[(j+1)&0x0f]; \
|
||||
s0 = sigma0_256(s0); \
|
||||
|
@ -158,28 +159,14 @@ static const sha2_word32 sha256_initial_hash_value[8] = {
|
|||
(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
|
||||
j++
|
||||
|
||||
static void SHA256_Final(uint8_t[SHA256_DIGEST_LENGTH], SHA256_CTX*);
|
||||
static void SHA256_Transform(SHA256_CTX*, const sha2_word32*);
|
||||
|
||||
/*** SHA-256: *********************************************************/
|
||||
void SHA256_Init(SHA256_CTX* context)
|
||||
{
|
||||
if (context == (SHA256_CTX*)0) {
|
||||
return;
|
||||
}
|
||||
memcpy(context->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH);
|
||||
memset(context->buffer, 0, SHA256_BLOCK_LENGTH);
|
||||
context->bitcount = 0;
|
||||
}
|
||||
|
||||
static void
|
||||
SHA256_Transform(SHA256_CTX* context, const sha2_word32* data)
|
||||
SHA256_Transform(SHA256_CTX *context, const uint32_t *data)
|
||||
{
|
||||
sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
|
||||
sha2_word32 T1, *W256;
|
||||
uint32_t a, b, c, d, e, f, g, h, s0, s1;
|
||||
uint32_t T1, *W256;
|
||||
int j;
|
||||
|
||||
W256 = (sha2_word32*)context->buffer;
|
||||
W256 = (uint32_t *)context->buffer;
|
||||
|
||||
/* Initialize registers with the prev. intermediate value */
|
||||
a = context->state[0];
|
||||
|
@ -230,48 +217,143 @@ SHA256_Transform(SHA256_CTX* context, const sha2_word32* data)
|
|||
a = b = c = d = e = f = g = h = T1 = 0;
|
||||
}
|
||||
|
||||
#else /* SHA2_UNROLL_TRANSFORM */
|
||||
|
||||
void
|
||||
SHA256_Update(SHA256_CTX* context, const uint8_t *data, size_t len)
|
||||
SHA256_Transform(SHA256_CTX *context, const uint32_t *data)
|
||||
{
|
||||
uint32_t a, b, c, d, e, f, g, h, s0, s1;
|
||||
uint32_t T1, T2, *W256;
|
||||
int j;
|
||||
|
||||
W256 = (uint32_t *)(void *)context->buffer;
|
||||
|
||||
/* Initialize registers with the prev. intermediate value */
|
||||
a = context->state[0];
|
||||
b = context->state[1];
|
||||
c = context->state[2];
|
||||
d = context->state[3];
|
||||
e = context->state[4];
|
||||
f = context->state[5];
|
||||
g = context->state[6];
|
||||
h = context->state[7];
|
||||
|
||||
j = 0;
|
||||
do {
|
||||
W256[j] = be32toh(*data);
|
||||
++data;
|
||||
/* Apply the SHA-256 compression function to update a..h */
|
||||
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
|
||||
T2 = Sigma0_256(a) + Maj(a, b, c);
|
||||
h = g;
|
||||
g = f;
|
||||
f = e;
|
||||
e = d + T1;
|
||||
d = c;
|
||||
c = b;
|
||||
b = a;
|
||||
a = T1 + T2;
|
||||
|
||||
j++;
|
||||
} while (j < 16);
|
||||
|
||||
do {
|
||||
/* Part of the message block expansion: */
|
||||
s0 = W256[(j+1)&0x0f];
|
||||
s0 = sigma0_256(s0);
|
||||
s1 = W256[(j+14)&0x0f];
|
||||
s1 = sigma1_256(s1);
|
||||
|
||||
/* Apply the SHA-256 compression function to update a..h */
|
||||
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
|
||||
(W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
|
||||
T2 = Sigma0_256(a) + Maj(a, b, c);
|
||||
h = g;
|
||||
g = f;
|
||||
f = e;
|
||||
e = d + T1;
|
||||
d = c;
|
||||
c = b;
|
||||
b = a;
|
||||
a = T1 + T2;
|
||||
|
||||
j++;
|
||||
} while (j < 64);
|
||||
|
||||
/* Compute the current intermediate hash value */
|
||||
context->state[0] += a;
|
||||
context->state[1] += b;
|
||||
context->state[2] += c;
|
||||
context->state[3] += d;
|
||||
context->state[4] += e;
|
||||
context->state[5] += f;
|
||||
context->state[6] += g;
|
||||
context->state[7] += h;
|
||||
|
||||
/* Clean up */
|
||||
a = b = c = d = e = f = g = h = T1 = T2 = 0;
|
||||
}
|
||||
|
||||
#endif /* SHA2_UNROLL_TRANSFORM */
|
||||
|
||||
int
|
||||
SHA256_Update(SHA256_CTX *context, const uint8_t *data, size_t len)
|
||||
{
|
||||
unsigned int freespace, usedspace;
|
||||
|
||||
if (len == 0) {
|
||||
/* Calling with no data is valid - we do nothing */
|
||||
return;
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Sanity check: */
|
||||
assert(context != NULL && data != NULL);
|
||||
|
||||
usedspace =
|
||||
(unsigned int)(context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
|
||||
usedspace = (unsigned int)((context->bitcount >> 3) %
|
||||
SHA256_BLOCK_LENGTH);
|
||||
if (usedspace > 0) {
|
||||
/* Calculate how much free space is available in the buffer */
|
||||
freespace = SHA256_BLOCK_LENGTH - usedspace;
|
||||
|
||||
if (len >= freespace) {
|
||||
/* Fill the buffer completely and process it */
|
||||
memcpy(&context->buffer[usedspace], data, freespace);
|
||||
memcpy(&context->buffer[usedspace], data,
|
||||
(size_t)(freespace));
|
||||
context->bitcount += freespace << 3;
|
||||
len -= freespace;
|
||||
data += freespace;
|
||||
SHA256_Transform(context,
|
||||
(sha2_word32*)context->buffer);
|
||||
(uint32_t *)(void *)context->buffer);
|
||||
} else {
|
||||
/* The buffer is not yet full */
|
||||
memcpy(&context->buffer[usedspace], data, len);
|
||||
context->bitcount += len << 3;
|
||||
/* Clean up: */
|
||||
usedspace = freespace = 0;
|
||||
return;
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
while (len >= SHA256_BLOCK_LENGTH) {
|
||||
/* Process as many complete blocks as we can */
|
||||
SHA256_Transform(context, (const sha2_word32*)data);
|
||||
context->bitcount += SHA256_BLOCK_LENGTH << 3;
|
||||
len -= SHA256_BLOCK_LENGTH;
|
||||
data += SHA256_BLOCK_LENGTH;
|
||||
/*
|
||||
* Process as many complete blocks as possible.
|
||||
*
|
||||
* Check alignment of the data pointer. If it is 32bit aligned,
|
||||
* SHA256_Transform can be called directly on the data stream,
|
||||
* otherwise enforce the alignment by copy into the buffer.
|
||||
*/
|
||||
if ((uintptr_t)data % 4 == 0) {
|
||||
while (len >= SHA256_BLOCK_LENGTH) {
|
||||
SHA256_Transform(context,
|
||||
(const uint32_t *)(const void *)data);
|
||||
context->bitcount += SHA256_BLOCK_LENGTH << 3;
|
||||
len -= SHA256_BLOCK_LENGTH;
|
||||
data += SHA256_BLOCK_LENGTH;
|
||||
}
|
||||
} else {
|
||||
while (len >= SHA256_BLOCK_LENGTH) {
|
||||
memcpy(context->buffer, data, SHA256_BLOCK_LENGTH);
|
||||
SHA256_Transform(context,
|
||||
(const uint32_t *)(const void *)context->buffer);
|
||||
context->bitcount += SHA256_BLOCK_LENGTH << 3;
|
||||
len -= SHA256_BLOCK_LENGTH;
|
||||
data += SHA256_BLOCK_LENGTH;
|
||||
}
|
||||
}
|
||||
if (len > 0) {
|
||||
/* There's left-overs, so save 'em */
|
||||
|
@ -280,25 +362,22 @@ SHA256_Update(SHA256_CTX* context, const uint8_t *data, size_t len)
|
|||
}
|
||||
/* Clean up: */
|
||||
usedspace = freespace = 0;
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
static void
|
||||
SHA256_Final(sha2_byte digest[], SHA256_CTX* context)
|
||||
static int
|
||||
SHA224_256_Final(uint8_t digest[], SHA256_CTX *context, size_t len)
|
||||
{
|
||||
sha2_word32 *d = (sha2_word32*)digest;
|
||||
uint32_t *d = (void *)digest;
|
||||
unsigned int usedspace;
|
||||
|
||||
/* Sanity check: */
|
||||
assert(context != NULL);
|
||||
size_t i;
|
||||
|
||||
/* If no digest buffer is passed, we don't bother doing this: */
|
||||
if (digest != (sha2_byte*)0) {
|
||||
usedspace =
|
||||
(unsigned int)(context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
|
||||
#ifndef WORDS_BIGENDIAN
|
||||
/* Convert FROM host byte order */
|
||||
REVERSE64(context->bitcount,context->bitcount);
|
||||
#endif
|
||||
if (digest != NULL) {
|
||||
usedspace = (unsigned int)((context->bitcount >> 3) %
|
||||
SHA256_BLOCK_LENGTH);
|
||||
context->bitcount = htobe64(context->bitcount);
|
||||
if (usedspace > 0) {
|
||||
/* Begin padding with a 1 bit: */
|
||||
context->buffer[usedspace++] = 0x80;
|
||||
|
@ -306,51 +385,52 @@ SHA256_Final(sha2_byte digest[], SHA256_CTX* context)
|
|||
if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
|
||||
/* Set-up for the last transform: */
|
||||
memset(&context->buffer[usedspace], 0,
|
||||
SHA256_SHORT_BLOCK_LENGTH - usedspace);
|
||||
(size_t)(SHA256_SHORT_BLOCK_LENGTH -
|
||||
usedspace));
|
||||
} else {
|
||||
if (usedspace < SHA256_BLOCK_LENGTH) {
|
||||
memset(&context->buffer[usedspace], 0,
|
||||
SHA256_BLOCK_LENGTH - usedspace);
|
||||
(size_t)(SHA256_BLOCK_LENGTH -
|
||||
usedspace));
|
||||
}
|
||||
/* Do second-to-last transform: */
|
||||
SHA256_Transform(context,
|
||||
(sha2_word32*)context->buffer);
|
||||
(uint32_t *)(void *)context->buffer);
|
||||
|
||||
/* And set-up for the last transform: */
|
||||
memset(context->buffer, 0,
|
||||
SHA256_SHORT_BLOCK_LENGTH);
|
||||
(size_t)(SHA256_SHORT_BLOCK_LENGTH));
|
||||
}
|
||||
} else {
|
||||
/* Set-up for the last transform: */
|
||||
memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
|
||||
memset(context->buffer, 0,
|
||||
(size_t)(SHA256_SHORT_BLOCK_LENGTH));
|
||||
|
||||
/* Begin padding with a 1 bit: */
|
||||
*context->buffer = 0x80;
|
||||
}
|
||||
/* Set the bit count: */
|
||||
*(sha2_word64*)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] =
|
||||
context->bitcount;
|
||||
memcpy(&context->buffer[SHA256_SHORT_BLOCK_LENGTH],
|
||||
&context->bitcount, sizeof(context->bitcount));
|
||||
|
||||
/* Final transform: */
|
||||
SHA256_Transform(context, (sha2_word32*)context->buffer);
|
||||
SHA256_Transform(context, (uint32_t *)(void *)context->buffer);
|
||||
|
||||
#ifndef WORDS_BIGENDIAN
|
||||
{
|
||||
/* Convert TO host byte order */
|
||||
int j;
|
||||
for (j = 0; j < 8; j++) {
|
||||
REVERSE32(context->state[j],context->state[j]);
|
||||
*d++ = context->state[j];
|
||||
}
|
||||
}
|
||||
#else
|
||||
memcpy(d, context->state, SHA256_DIGEST_LENGTH);
|
||||
#endif
|
||||
for (i = 0; i < len / 4; i++)
|
||||
d[i] = htobe32(context->state[i]);
|
||||
}
|
||||
|
||||
/* Clean up state data: */
|
||||
memset(context, 0, sizeof(SHA256_CTX));
|
||||
memset(context, 0, sizeof(*context));
|
||||
usedspace = 0;
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
static int
|
||||
SHA256_Final(uint8_t digest[], SHA256_CTX *context)
|
||||
{
|
||||
return SHA224_256_Final(digest, context, SHA256_DIGEST_LENGTH);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -362,9 +442,9 @@ static const char sha2_hex_digits[] = "0123456789abcdef";
|
|||
char *
|
||||
SHA256_End(SHA256_CTX *ctx, uint8_t *buffer)
|
||||
{
|
||||
uint8_t digest[SHA256_DIGEST_LENGTH], *d = digest;
|
||||
uint8_t *ret;
|
||||
int i;
|
||||
uint8_t digest[SHA256_DIGEST_LENGTH], *d = digest;
|
||||
uint8_t *ret;
|
||||
int i;
|
||||
|
||||
/* Sanity check: */
|
||||
assert(ctx != NULL);
|
||||
|
|
|
@ -46,7 +46,7 @@ xbps_get_file_hash(const char *file)
|
|||
{
|
||||
SHA256_CTX ctx;
|
||||
char *hash;
|
||||
uint8_t buf[BUFSIZ * 20], digest[SHA256_DIGEST_LENGTH * 2 + 1];
|
||||
uint8_t buf[BUFSIZ * 20], digest[SHA256_DIGEST_STRING_LENGTH];
|
||||
ssize_t bytes;
|
||||
int fd;
|
||||
|
||||
|
|
Loading…
Reference in New Issue